Skip to main content

Class

ghci> :t (==)
(==) :: (Eq a) => a -> a -> Bool

ghci> :t fromIntegral
fromIntegral :: (Integral a, Num b) => a -> b
ghci> :info typeClassName

=> 符号

=> 左部: 类约束(Class Constraint) => 右部: 函数类型(参数/返回值类型),其中参数类型同属 Class

Eq

  • 功能: 成员类型可判断相等性
  • 成员: 大部分基本类型(不包含函数类型)
  • 方法: == 与 /= 函数
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)

Ord

Ord 成员必为 Eq 成员: class (Eq a) => Ord a where

  • 功能: 成员类型可排序
  • 成员: 大部分基本类型(不包含函数类型)
  • 方法:
    • < > <= >= 函数
    • compare 函数 (Ord a) => a -> a -> Ordering

Show

  • 功能: 成员类型可用字符串表示
  • 成员: 大部分基本类型(不包含函数类型)
  • 方法: show 函数 (Show a) => a -> String
tip

结合 Read, 可用于字符串与数值之间的转化

Read

  • 功能: 可以将字串转为 Read 某成员类型
  • 成员: 大部分基本类型(不包含函数类型)
  • 方法: read 函数 (Read a) => String -> a
tip

结合 Show, 可用于字符串与数值之间的转化

Enum

  • 功能: 连续性(可枚举), 其成员类型可用于Range
  • 成员: () Bool Char Ordering Int Integer Float Double
[Thursday .. Sunday]
ghci> succ Monday
Tuesday
ghci> pred Saturday
Friday

Bounded

  • 功能: 成员类型具有上下限
  • 方法: minBound/maxBound 函数 (Bounded a) => a 无参多态常量/定义
ghci> minBound :: Day
Monday
ghci> maxBound :: Day
Sunday

Num

  • 功能: 成员类型具有数字特征.
  • 成员: 实数 整数 (Int/Integer/Float/Double).
  • 方法: +/-/*/abs 函数.
  • 实例: 所有数字都是多态常量/定义(可视为函数).
ghci> :t 20
20 :: (Num t) => t

Integral

  • 功能: 成员类型具有数字特征
  • 成员: 整型 - Int Integer

Floating

  • 功能: 成员类型具有数字特征
  • 成员: 浮点型 - Float Double
TypeClassMethod Feature
Functorf a + (a -> b) -> f b
Applicativef a + f (a -> b) -> f b
Monadm a + (a -> m b) -> m b

Functor

  • 成员: Maybe a, [], Either a, IO
    • 成员 kind 必须为 * -> *
    • f 一元类型构造符(type constructor)
  • 必须遵守准则:
    • fmap id = id
    • fmap (f . g) F = fmap f (fmap g F)
ghci> :info Functor
class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b
($) :: a -> f b -> f a
instance Functor [] where
fmap = map

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

instance Functor (Either a) where
fmap f (Right x) = Right (f x)
fmap f (Left x) = Left x

instance Functor IO where
fmap f action = do
result <- action
return (f result)

Control Applicative

  • 成员: f :: * -> * 一元类型构造符 (Type Constructor).
  • <*>: 参数为 2 个 functor 实例, 其中一个包含一个函数.
(<$>) :: (Functor f) => (a -> b) -> f a -> f b
f <$> x = fmap f x
  • 作用: 可以用单一一个函数操作多个 functor
class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

Maybe

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
(Just f) <*> something = fmap f something

Collection []

instance Applicative [] where
pure x = [x]
fs <*> xs = [f x | f <- fs, x <- xs]

IO

instance Applicative IO where
pure = return
a <*> b = do
f <- a
x <- b
return (f x)

ZipList

instance Applicative ZipList where
pure x = ZipList (repeat x)
ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)

Multi Functor

ghci> pure (+) <*> Just 3 <*> Just 5
Just 8
ghci> pure (+) <*> Just 3 <*> Nothing
Nothing
ghci> pure (+) <*> Nothing <*> Just 5
Nothing
ghci> (*) <$> [2,5,10] <*> [8,10,11]
[16,20,22,40,50,55,80,100,110]
myAction :: IO String
myAction = (++) <$> getLine <*> getLine
ghci> getZipList $ max <$> ZipList [1,2,3,4,5,3] <*> ZipList [5,3,1,2]
[5,3,3,4]

高度封装函数

liftA2, 对两个 applicative 运用二元函数:

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

ghci> liftA2 (:) (Just 3) (Just [4])
Just [3,4]
ghci> (:) <$> Just 3 <*> Just [4]
Just [3,4]

Control Monad

  • 成员: 类型构造符(type constructor)
class Monad m where
return :: a -> m a

{- bind -}(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b
x >> y = x >>= _ -> y

fail :: String -> m a
fail msg = error msg
  • 特性: 允许返回值之间具有弹性交互
{- 当出现异常后,之后所有的值都变为Nothing -}
ghci> return (0,0) >>= landRight 2 >>= landLeft 2 >>= landRight 2
Just (2,4)
ghci> return (0,0) >>= landLeft 1 >>= landRight 4
\ >>= landLeft (-1) >>= landRight (-2)
Nothing

Monad Laws:

  • return 满足 Left identity: return x >>= f 等于 f x
  • return 满足 right identity: m >>= return 等于 m
  • Associativity: 结合律 (m >>= f) >>= g 等于 m >>= (\x -> f x >>= g)
ghci> return 3 >>= (\x -> Just (x+100000))
Just 100003
ghci> (\x -> Just (x+100000)) 3
Just 100003

ghci> Just "move on up" >>= (\x -> return x)
Just "move on up"
ghci> [1,2,3,4] >>= (\x -> return x)
[1,2,3,4]
ghci> putStrLn "Wah!" >>= (\x -> return x)
Wah!

(<=<) :: (Monad m) => (b -> m c) -> (a -> m b) -> (a -> m c)
f <=< g = (\x -> g x >>= f)
ghci> let f x = [x,-x]
ghci> let g x = [x*3,x*2]
ghci> let h = f <=< g
ghci> h 3
[9,-9,6,-6]

Maybe Monad

具有失败可能性的 context 封装,灵活处理异常(返回值为 Nothing)

applyMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b
applyMaybe Nothing f = Nothing
applyMaybe (Just x) f = f x
instance Monad Maybe where
return x = Just x
Nothing >>= f = Nothing
Just x >>= f = f x
fail _ = Nothing

do 表示法:

  • 在 do expression 中,每一行都是一个 monadic value
  • 检查返回值,使用 <-
foo :: Maybe String
foo = do
x <- Just 3
y <- Just "!"
Just (show x ++ y)

foo :: Maybe String
foo = Just 3 >>= (\x ->
Just "!" >>= (\y ->
Just (show x ++ y)))

routine :: Maybe Pole
routine = do
start <- return (0,0)
first <- landLeft 2 start
Nothing
second <- landRight 2 first
landLeft 1 second

List Monad

  • non-determinism(不确定性)
ghci> (*) <$> [1,2,3] <*> [10,100,1000]
[10,100,1000,20,200,2000,30,300,3000]
  • 实现
instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)
fail _ = []
  • 返回值交互: 下例中 n 与 return (n, ch) 进行交互
    • list comprehension 与 do 表示法 均是 >>= 的语法糖
  • list comprehension: <- 与 条件表达式
  • do 表示法: <- 与 guard 函数
ghci> [1,2] >>= \n -> ['a','b'] >>= \ch -> return (n,ch)
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

{- do 表示法 -}
listOfTuples :: [(Int,Char)]
listOfTuples = do
n <- [1,2]
ch <- ['a','b']
return (n,ch)

sevensOnly :: [Int]
sevensOnly = do
x <- [1..50]
guard ('7' `elem` show x)
return x

{- list comprehension -}
ghci> [ (n,ch) | n <- [1,2], ch <- ['a','b'] ]
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

MonadPlus

使 Monad 具有 Monoid 的性质(二元封闭运算)

instance MonadPlus [] where
mzero = []
mplus = (++)

Monad Algorithms

马走日

  • 计算出可移动位置
moveKnight :: KnightPos -> [KnightPos]
moveKnight (c,r) = do
(c',r') <- [(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)
,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)
]
guard (c' `elem` [1..8] && r' `elem` [1..8])
return (c',r')
  • 利用 >>= 向后传递多个可交互的位置
in3 start = return start >>= moveKnight >>= moveKnight >>= moveKnight

in3 :: KnightPos -> [KnightPos]
in3 start = do
first <- moveKnight start
second <- moveKnight first
moveKnight second
  • 最后完成完整函数: 产生所有三步的可能位置,检查其中一个位置是否在里面
canReachIn3 :: KnightPos -> KnightPos -> Bool
canReachIn3 start end = end `elem` in3 start

Foldable

import qualified Data.Foldable as F

foldMap :: (Monoid m, Foldable t) => (a -> m) -> t a -> m
instance F.Foldable Tree where
foldMap f Empty = mempty
foldMap f (Node x l r) = F.foldMap f l `mappend`
f x `mappend`
F.foldMap f r

Data Monoid

  • 成员: 必须为具体类型 (不可是类型构造符 (Type Constructor)).
  • 准则 (Monoid Law):
    • 结合律 a·(b·c) = (a·b)·c.
    • 无需满足 a mappend b == b mappend a.
class Monoid m where
mempty :: m -- identity
mappend :: m -> m -> m
mconcat :: [m] -> m
mconcat = foldr mappend mempty
  • 实例
instance Monoid [a] where
mempty = []
mappend = (++)
newtype Product a =  Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
mempty = Product 1
Product x `mappend` Product y = Product (x * y)

ghci> getProduct $ Product 3 `mappend` Product 4 `mappend` Product 2
24
newtype Any = Any { getAny :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid Any where
mempty = Any False
Any x `mappend` Any y = Any (x || y)

ghci> getAny . mconcat . map Any $ [False, False, False, True]
True
newtype All = All { getAll :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
mempty = All True
All x `mappend` All y = All (x && y)

ghci> getAll . mconcat . map All $ [True, True, False]
False
instance Monoid Ordering where
mempty = EQ
LT `mappend` _ = LT
EQ `mappend` y = y
GT `mappend` _ = GT
tip
-- mappend 在左边不等于 EQ 的情况下都会回传左边的值。相反地则回传右边的值
-- 可代替多个 if/else 语句
import Data.Monoid

lengthCompare :: String -> String -> Ordering
lengthCompare x y = (length x `compare` length y) `mappend`
(vowels x `compare` vowels y) `mappend`
(x `compare` y)
where vowels = length . filter (`elem` "aeiou")
instance Monoid a => Monoid (Maybe a) where
mempty = Nothing
Nothing `mappend` m = m
m `mappend` Nothing = m
Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)

instance Monoid (First a) where
mempty = First Nothing
First (Just x) `mappend` _ = First (Just x)
First Nothing `mappend` x = x

ghci> getFirst $ First (Just 'a') `mappend` First Nothing
Just 'a'

Custom Type Class

  • 创建新类: 可以只有声明没有实现
class ClassName where
defining code
  • 创建已有类的实例: 必须实现所有已声明函数
    • 作用等同于 deriving(自由度更大)
    • 可以重写函数,去除默认函数处理,达到特定目的
- 先创建新类型
data TrafficLight = Red | Yellow | Green

instance Eq TrafficLight where
Red == Red = True
Green == Green = True
Yellow == Yellow = True
_ == _ = False

instance Show TrafficLight where
show Red = "Red light"
show Yellow = "Yellow light"
show Green = "Green light"
  • 创建新类和实现实例时,使用 class constraint
    • 可达到类似于继承的效果
    • 可达到限制类型的效果
class (Eq a) => Num a where
...

instance (Eq m) => Eq (Maybe m) where
Just x == Just y = x == y
Nothing == Nothing = True
_ == _ = False